

GUJARAT TECHNOLOGICAL UNIVERSITY Syllabus for Master of Computer Applications, 3rd Semester Subject Name: Machine Learning Subject Code: 639402

With effective from academic year 2020-21

Prerequisites: Basics of computer science including algorithms, data structure, Probability theory and Bayesian Concept Learning *

1. Teaching and Examination Scheme:

T	'eacl Sche	hing eme	Credits		Examination Marks				
т	и т р		C	C Theory Marks		Practical Marks		Marks	
L	1	Г	C	ESE (E)	PA (M)	ESE (V)	PA (I)		
3	-	2	4	70	30	30	20	150	

1. Course Outcomes:

Course Outcome	Course Outcome (Learner will be able to)
Component	
CO-1	Understanding Various Machine Learning Algorithms & Their Area
	of Applications
CO-2	Explain the Process of Formulating & Solving Real World Problem
	using Machine Technology
CO-3	Design and Implement various Decision Making Problems using
	Machine Learning

2. Course Duration: The course duration is of 40 sessions of 60 minutes each.

3. Course Contents:

I.I.s.it			No. of	70 Marks
Unit No.		Contents	Session	(External
INO:			S	Exam)
	•	Introduction to Machine Learning:		
		What is human learning? What is Machine Learning?		_
I		Human learning versus machine learning, Types of	4	7
		machine learning, Applications of machine learning,		
		Tools for machine learning.		
	•	Preparing to Model, Feature Engineering:		
		Machine Learning activities, Basic Types of data in		
т		Machine Learning, Structures of data, Data Quality and	10	10
11		Remediation, Data Pre-Processing,	10	10
		Introduction to Feature Engineering, Feature		
		Transformation, Feature Subset Selection		
	٠	Modelling and Evaluation:		
		Selecting a Model, Training a Model, Model		
III		Representation and Interpretability, Evaluating	8	14
		Performance of a Model, Improving Performance of a		
		Model		
	٠	Supervised Learning: Classification and Regression:		
IV		Example of Supervised Learning, Classification Model,	10	17
		Classification Learning Steps, Common Classification		

GUJARAT TECHNOLOGICAL UNIVERSITY Syllabus for Master of Computer Applications, 3rd Semester Subject Name: Machine Learning

Subject Code: 639402

	Algorithms		
	Example of Regression, Common regression Algorithms		
V	• Unsupervised Learning: Unsupervised Learning versus Supervised Learning, Applications of Unsupervised Learning, Clustering, Finding Pattern using	8	14
	Association Rules		

* Additional Sessions may be taken to revise Prerequisites Contents.

4. Pedagogy:

- ICT enabled Classroom teaching
- Case study
- Practical to be implemented using python library (Sample practical list is attached as Appendix-A)
- Interactive class room discussions

5. Evaluation:

Students shall be evaluated on the following components:

Α	Internal Evaluation	(Total - 20 Marks)
	Continuous Evaluation Component	10 marks
	Class Presence & Participation	10 marks
В	Mid-Semester examination	(30 Marks)
С	End –Semester Examination(Theory)	(70 Marks)
D	End –Semester Examination(Practical/Viva)	(30 Marks)

6. Reference Books:

No.	Author	Name of the Book	Publisher
1	Saikat Dutt, Subramanian Chandramouli, Amit Kumar Das **	Machine Learning	Pearson Education
2	Tom M Mitchell	Machine Learning	McGraw Hill
3	Anuradha Srinivarasaraghavan, Vincy Joseph	Machine Learning	Wiley India
4	Peter Harrington	Machine Learning in Action	DreamTech
5	Henrik Brink, Joseph Richards, Mark Fetherolf	Real-World Machine Learning	DreamTech
6	Christopher Bishop	Pattern Recognition and Machine Learning	Springer
7	Jiawei Han and Michelline Kamber	Data Mining: Concepts and Techniques	Morgan Kaufmann

** The first Reference book is to be considered as Main Book as per Syllabus Contents

Appendix-A

Sample Practical List

1. Write a python code to implement **decision tree** for below given dataset. Identify the root node and all subpart or children of node and draw the tree.

Item no	Age	Income	Student	Credit	Buys-
				Rating	Computer

GUJARAT TECHNOLOGICAL UNIVERSITY Syllabus for Master of Computer Applications, 3rd Semester Subject Name: Machine Learning Subject Code: 639402

With effective from academic year 2020-21

1	Youth	High	No	Fair	No
2	Youth	High	No	Excellent	No
3	Middle	High	No	Fair	Yes
4	Senior	Medium	No	Fair	Yes
5	Senior	Low	Yes	Fair	Yes
6	Middle	Low	Yes	Excellent	No
7	Senior	Low	Yes	Excellent	Yes
8	Youth	Medium	No	Fair	No
9	Youth	Low	Yes	Fair	Yes
10	Senior	Medium	Yes	Fair	Yes
11	Youth	Medium	Yes	Excellent	Yes
12	Middle	Medium	No	Excellent	Yes
13	Middle	High	Yes	Fair	Yes
14	Senior	Medium	No	Excellent	No

2. Write a python code to implement **K-nearest neighbourhood** program for the given dataset.

Item no	Temp	Humidity	Wind	Play
			Speed	
1	85	85	12	No
2	80	90	9	No
3	83	86	4	Yes
4	70	96	3	Yes
5	68	80	5	Yes
6	65	70	20	No
7	64	65	2	Yes
8	72	95	12	No
9	69	70	5	Yes
10	75	80	2	Yes
11	75	70	3	Yes
12	72	90	4	Yes
13	81	75	5	Yes
14	71	91	15	No

3. Write a python code to implement Apriori algorithm, apply join and prune method and find frequent item set

Sr No.	Item no	Name
1	T1	Bread, butter, milk, soda
2	T2	Coke, egg, milk
3	T3	Bread, butter, egg
4	T4	Break, coke, jam
5	T5	Bread, butter
6	T6	Potato chips, soda

GUJARAT TECHNOLOGICAL UNIVERSITY Syllabus for Master of Computer Applications, 3rd Semester Subject Name: Machine Learning Subject Code: 639402

With effective from academic year 2020-21

7	T7	Coke, fruit, juice
8	T8	Bread, coke, milk
9	T9	Coke, soda, jam, milk
10	T10	Bread, butter, egg, milk,
		soda
11	T11	Bread, milk
12	T12	Bread, jam

4. Write a python code to apply **Naive Bayesian and Logistic Regression** algorithm to classify that whether a person can buy computer or not based on given test data:

Item no	Age	Income	Student	Credit	Buys-
				Rating	Computer
1	Youth	High	No	Fair	No
2	Youth	High	No	Excellent	No
3	Middle	High	No	Fair	Yes
4	Senior	Medium	No	Fair	Yes
5	Senior	Low	Yes	Fair	Yes
6	Middle	Low	Yes	Excellent	No
7	Senior	Low	Yes	Excellent	Yes
8	Youth	Medium	No	Fair	No
9	Youth	Low	Yes	Fair	Yes
10	Senior	Medium	Yes	Fair	Yes
11	Youth	Medium	Yes	Excellent	Yes
12	Middle	Medium	No	Excellent	Yes
13	Middle	High	Yes	Fair	Yes
14	Senior	Medium	No	Excellent	No

Test Data

Age: Youth Income: LOW Student: No Credit Rating: Fair Buy Computer -??

- 5. Python code for **Preparing to Model** (Appendix B.2, Page No. 365 373) and **Feature Engineering** (Appendix B.4, Page No. 378 385).
- **6.** Apply k-means clustering approach with k = 2 to the following dataset.

X	Y	Ζ
-0.154	0.376	0.099
-0.103	0.476	-0.027
0.228	0.036	-0.251
0.330	0.013	-0.251
-0.114	0.482	0.014
0.295	0.084	-0.297
0.262	0.042	-0.304

GUJARAT TECHNOLOGICAL UNIVERSITY

Syllabus for Master of Computer Applications, 3rd Semester Subject Name: Machine Learning With effective from academic year 2020-21

Subject	Code:	639402	

-0.051 0.416	-0.306
--------------	--------

7. Implement a python program that takes interest rate (x), finds the equation that best fits the data and is able to forecast out median home price for given interest rate using the data given below. (Use linear regression)

Interest rate	Median home
(%)(x)	price (y)
10.3	\$183,800
10.3	\$183,200
10.1	\$174,900
9.3	\$173,500
8.4	\$172,900
7.3	\$173,200
8.4	\$173,200
7.9	\$169,700
7.6	\$174,500
7.6	\$177,900
6.9	\$188,100
7.4	\$203,200
8.1	\$230,200
7	\$258,200
6.5	\$309,800
5.8	\$329,800

8. Apply following supervised machine learning algorithms for **All** classification problems as shown under:

Algorithm	Data set for Classification Problem	
Decision Tree	Iris Dataset (from sklearn.dataset import load_iris)	
Logistic Regression	Wine Dataset (from sklearn.dataset import	
	load_wine)	
K-Nearest	Breast Cancer Wisconsin Dataset (from	
Neighborhood	sklearn.dataset import load_breast_cancer)	
Naïve Bayes	Titanic Dataset (https://www.openml.org/d/42438)	
SVM	Bank marketing Dataset	
	(https://www.openml.org/d/1461)	

Obtain model accuracy, generate classification report, and show the performance of the model graphically through roc_auc curve.

- **9.** Build a prediction model using regression technique for (1) Boston house-prices (from sklearn.dataset import load_boston) (2) Diabetes (from sklearn.dataset import load diabetes) datasets. Also, evaluate the model.
- **10.** Implement support vector machine approach to predictive modelling for (1) Boston house-prices (from sklearn.dataset import load_boston) (2) Diabetes (from sklearn.dataset import load diabetes) datasets. Also, evaluate the model.
- **11.** Implement unsupervised machine learning algorithm (Clustering K Means) in python on Titanic dataset (https://www.openml.org/d/42438) to cluster data by

GUJARAT TECHNOLOGICAL UNIVERSITY Syllabus for Master of Computer Applications, 3rd Semester Subject Name: Machine Learning

Subject Code: 639402

removing the classlabel.Use elbow method to find the optimal number of clusters. Also, measure the quality of clustering via silhouette coefficient.

- **12.** Implement unsupervised machine learning algorithm (Clustering K Means) in python on Breast Tumour dataset to cluster data (use Breast Tumour dataset) by removing the classlabel.
- **13.** Implement unsupervised machine learning algorithm (Clustering Hierarchical) in python on Titanic dataset to cluster data (use Titanicdataset).
- **14.** Implement Apriori algorithm in python to find rules which explain association between different products for given transactions at a retail store. (The data is available

athttps://drive.google.com/file/d/1NUXoptUlHY8z4KcFKpFA6sQN5KnWzk3p/view ?us p=sharing)

Desirable Practical Lists

- 1. Classification and Prediction algorithms on UCI dataset using Python's scikit-learn library. Perform Exploratory Data Analysis, implement data visualization techniques, pre-process the data, build a model by applying suitable algorithm, evaluate the model by generating report, and show the performance of the model graphically through roc_auc curve.
- 2. For the sentiment analysis dataset given in link: <u>https://drive.google.com/file/d/1x6H7_KJjkbDrpgZFS7I2wjsZsILeSJ4S/view?usp=sh</u> aring, implement the following in python,
 - a) Clean and pre-process the dataset by removing URL, removing HTML tags, handling negation words which are split into two parts, converting the words to lower cases, removing all non-letter characters
 - b) Split the dataset into training and testing set
 - c) Implement feature extraction technique (to convert textual data to the numeric form)
 - d) Build the classification model using Logistic Regression that classifies if a given sentiment text is positive or negative
 - e) Obtain the accuracy score of the built model.
- **3.** Implement a content-based recommender system in python that recommends movies that are similar to a particular movie using movielens-20m-dataset available at https://kaggle.com.

The practical exercises should be performed in python.

References:

- 1) Peter Harrington, "Machine Learning in Action", DreamTech
- 2) Michael Bowles, "Machine Learning in Python", Wiley
- 3) Gavin Hackeling, Mastering Machine Learning with scikit-learn, Packt
- 4) Giuseppe Bonaccorso, Machine Learning Algorithms Second Edition, Packt